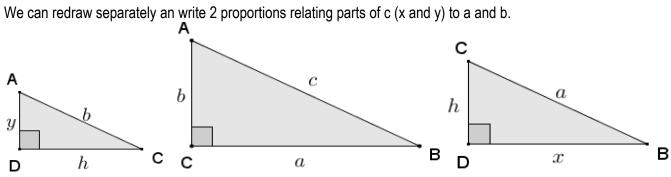

Geomet	try Regents Lomac 2015-2016	Date <u>2/8</u>	due <u>2/10</u>	Similarity: Simplifying Radicals	7.2R
Name			Per		
LO: I can prove the Pythagorean Theorem using similarity and can solve problems involving 30-60-90 and 45-45-90 right triangles.			n solve problems involving 30-		

DO NOW On the back of this packet

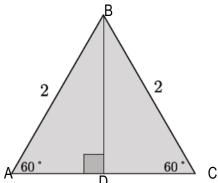

(1) calculator

Similar Triangles: Proving the Pythagorean Theorem

By drawing altitude CD, we create three

NOTE: c = __

THE PROOF:

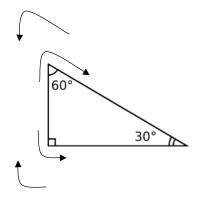

(2) calculator

Similar Triangles: Special right triangles and within triangle ratios

30-60-90 triangles

Triangle ABC below is equilateral. The altitude from vertex B to the opposite side divides the triangle into two right triangles.

- (a) Is \triangle ABC \cong \triangle CBD? Explain.
- (b) What are the lengths of AD and DC? Explain.

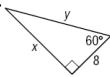


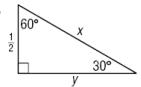
- (c) Use the Pythagorean Theorem to determine the length of the altitude, BD, in simplest radical form.
- (d) Write each ratio in the chart.

Short leg : Hypotenuse	Long leg : Hypotenuse	Short leg : Long leg
AD:AB	BD:AB	AD:BD

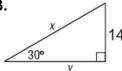
- (e) All 30-60-90 triangles will be similar because of ______.

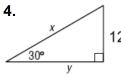
 If a 30-60-90 triangle has a hypotenuse of length 16, what are the lengths of the legs?
- (f) On the diagrams, show how you can find one side length from another just by multiplying.

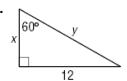


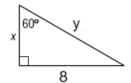

(3) calculator

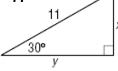
Similar Triangles: Special right triangles and within triangle ratios PRACTICE

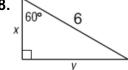

30-60-90 triangles

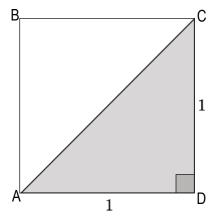

Find the value of x and y in each triangle.






3.





ı] (4	4)
	ماد	ula	tor

Similar Triangles: Special right triangles and within triangle ratios

45-45-90 triangles

(a) By drawing diagonal AC in square ABCD, right triangle ACD is formed.

- (b) What are the measures of angles ACD and CAD? Explain.
- (c) Use the Pythagorean Theorem to determine the length of the hypotenuse, AC, in simplest radical form.
- (d) Write each ratio in the chart. (Why are 2 ratios in the same box?)

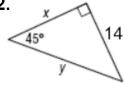
Leg : Hypotenuse	Short leg : Long leg
AD:AC or DC:AC	AD:CD

(e) All 45-45-90 triangles will be similar because of ______.

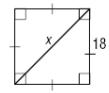
If a 45-45-90 triangle has a hypotenuse of length 20, what are the lengths of the legs?

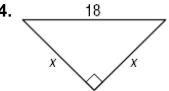
(5) calculator

Similar Triangles: Special right triangles and within triangle ratios PRACTICE

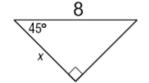

45-45-90 triangles

Find the value of x in each triangle.

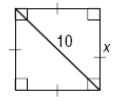

1.



2.

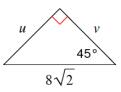


3.

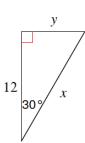


5.

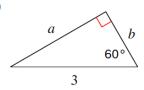
6.

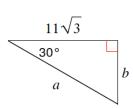


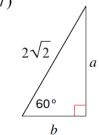
(6) calculator

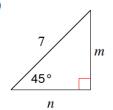

Similar Triangles: Special right triangles and within triangle ratios MIXED PRACTICE

Find the measure of each variable.


13)


14)


15)

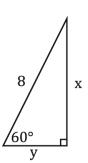

16)

17)

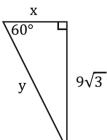
18)

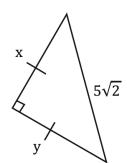

[] (7) calculator	Exit Ticket
	ON THE LAST PAGE
	Homework
(8) compass and straightedg e	Holliework
	CONSTRUCTION REVIEW.

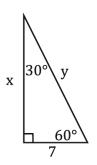
(a) Construct a 45° angle by first constructing a perpendicular bisector of a segment and then bisecting one of the angles.


(b) Construct a 30° angle by first constructing an equilateral triangle and bisecting one of the angles.

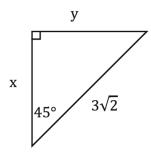
Homework


Label each special right triangle, and find the missing sides.
1.

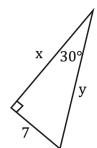

3.

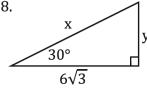


5.

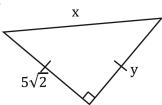


7.

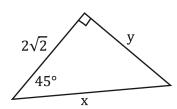


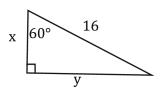

4.

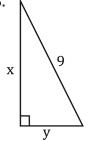
6.

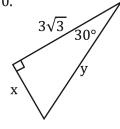


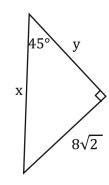
(8) calculator


Homework

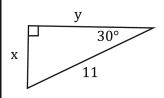

9.

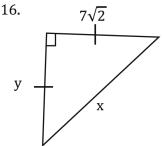

11.





15.

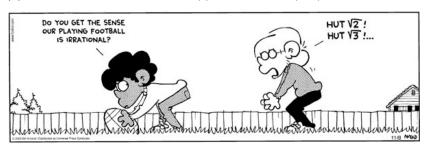



12.

14.

Exit Ticket	Name	Date	Per	_ 7.2R
` ,	earning Outcomes) are written below your names by doing the following:	ne on the front o	f this packet. Den	nonstrate your achievement of
•	has a leg with a length of 18 and a hypotenus h of the given leg, and decides it is a 30-60-90	•	of 36. Bernie noti	ces that the hypotenuse is
(a) How does I	Bernie know this a 30-60-90 triangle?			
(b) Since this is	s a 30-60-90 triangle, what should the remaini	ng leg length be	9?	
(c) Confirm you	ur answer using the Pythagorean Theorem.			

DO NOW Name______ Date _____ Per____ 7.2R


Simplify each expression.

$$(1)\sqrt{150}$$

(2)
$$\sqrt{3} \cdot \sqrt{18}$$

(3)
$$\sqrt{72} + \sqrt{50}$$

(4) Describe how this comic is supposed to make people smile.

